Standard Operating Procedure I: SEM, BSE and STEM

ESC II, Room A119F
810 West Campus Drive
West Haven, CT 06516

Yale WEST CAMPUS
Material Characterization Core
ywcmatsci.yale.edu

Version 1.10, April 2019
FOLLOW the SOP strictly to keep the instrument in good condition. Any violation will lead to user account suspension.

NEVER use your own USB drive on instrument computer. Data can be transferred with the Jump Drive provided by the Core.

NEVER surf the web on the instrument computer to minimize the risk of the computer being hacked.

NEVER allow other users to get access to instrument computer on your reservation.

REPORT any issues to Core director immediately so they can be fixed on time.
Table of Contents

1 Introduction ... 1
2 Initial System Status Check .. 2
3 Specimen Preparation ... 3
4 Starting Instrument .. 4
5 Loading the Specimen .. 7
6 Image Observation .. 10
7 Closing SEM measurement ... 19
8 Checklist after Experiment ... 20
9 Photodiode Back Scattered Electron (PD-BSE) ... 21
10 Scanning Transmission Electron Microscopy (STEM) .. 24
Hitachi SU8230 Standard Operating Procedure

1 Introduction

1) Instrument features:
 > Cold field emission (CFE) e-beam source: high resolution on conductive surfaces (0.8 nm on Au clusters/magnetic tape)
 > Sliding-in annular Energy Dispersive Spectroscopy (EDS) detector: high elemental mapping resolution
 > Sliding-in annular Photo Diode PD-BSE detector: high signal intensity from backscattered electron
 > Scanning Transmission Electron Microscopy (STEM) detector: high resolution compositional contrast imaging, ideal for EDS mapping

2) Location

Materials Characterization Core
Room A119F
810 West Campus Drive
West Haven, CT 06516

3) Primary Staff Contact

Dr. Min Li
Tel: 203-737-8270
Email: min.li@yale.edu
Office: ESC II, Room A119D

Zishan Wu, Lab Assistant
zishan.wu@yale.edu
203-824-5563 (cell)
Office: ESC II

Yiren Zhong, Lab Assistant
yiren.zhong@yale.edu
203-710-9820 (cell)

The Yale West Campus MCC Facilities are operated for the benefit of all researchers. If you encounter any problems with this facility, please contact the staff member listed above immediately. There is never a penalty for asking questions. If the equipment is not behaving exactly the way it should, contact a staff member.

Warning: Please follow strictly the SOP to keep the facility at good condition. We DO NOT recommend user explorations on program unless endorsed by core director.
2 Initial System Status Check

1) **Check to make sure** the Specimen Chamber (SC) pressure is at LE-4 Pascal. If not, stop and report to Core manager immediately.

![Specimen Chamber pressure meter](image1)

2) Check building supplied Compressed Air (CA) and Nitrogen (N2) pressure on the wall, make sure the CA pressure reads around 80 psi and N2 around 120 psi. If both gauges read zero, contact Core Manager immediately. **Warning**: Operating without compressed air and nitrogen will lead to system damage.

![Compressed Air and Nitrogen gauges](image2)

3) Check the LN2 dewar below and make sure it is high enough to support the measurement. A full tank can support ~1 hour so keep checking LN2 in every half hour to avoid pressure rise to shut down the electron beam. **Warning**: when opening the LN2 storage tank on the ground, pull the lid slowly out of the tank. **Do Not shake the lid** which could break the foam cylinder attached to the lid.
3 Specimen Preparation

1) **Always wear gloves** for vacuum sample preparation!! **Change gloves** if touched computer keyboard and mouse.

2) **The sample for SEM needs to be completely dried!**
 a) The **powders samples** can be dripped and dried on Si substrate. Alternately, powders can be **sprinkled** on **Conducting Graphite Paint** (supplied in the Core) directly applied on the specimen stub, or on to double sided conducting carbon tape.

 Note:
 - **Do not press powders too hard** as it may change surface morphology.
 - The **Conducting Graphite Paint** is highly recommended to fix the samples especially **magnetic** particles for **high magnification** (>100 k) measurement.

 b) The solid samples, large size flakes, single crystals can be fixed directly onto the sample holder using **Conducting Graphite Paint**.

3) Attach the specimen stub to the specimen holder; **DO NOT** overtighten the locking ring.

4) Adjust the height of specimen so that the **highest point on the sample** matches the **lower surface of the height gauge** (see photo below).

Warning: Samples mounted above the dashed line will **crash** into the lens system or detectors (EDS, STEM), and the **repair fee** will be charged to PI’s account.)
5) **Clean sample holder**: bring the specimen stub inside the fume hood and blow off loose particles on the sample surface using the N₂ gun.

4 **Starting Instrument**

1) **Sign in** on the logbook and put down date, usage time, sample materials, Specimen Chamber (SC) pressure, imaging modes (SEM, PD-BSE, STEM or EDS), and report any issues during measurement.

2) **Log into** the SEM computer using **FOM calendar** or **FOM Screen Lock** window below by clicking **Click here to login with NetID**:

![Login Window](image)

3) If the **PC_SEM** program is closed, click **PC_SEM** icon on desktop, choose or type **WC MCC** as profile name and hit **OK** button to login, no password required. (If the computer is logged off, then choose the profile **PC-SEM** and type **hitachi** to login.)

4) If a flashing message in yellow “**Execute Normal Flashing**” appears on top of the imaging window:

 - Click **OK** on the popup window on the right side
 - Click inside the **Electron Beam** window as highlighted in red
> Click **Flash** button in the popup **Vacc** (accelerating voltage) and **Ie** (emission current) setting window:

> Click **Execute** button highlighted in the **Flashing** window below to flash the tip.

> Click **Close** button in the popup **Vacc** and **Ie** setting window.

5) Check the **Electron Beam** window below:
 > The accelerating voltage **Vacc** should be **OFF** with a solid blue bar highlighted by arrow. If **Vacc** is **ON**, click the **OFF** button to turn the beam off.
6) Turn on the small LCD on the table by pressing the switch at the **top left corner** in the back. This unit includes the Specimen Chamber (SC) camera display and the camera power supply.

 > **Check and make sure** the specimen stage is at the exchange **EXC** position and no sample holders on the stage, as highlighted in the picture below:

 > **Check and make sure** no other detectors (**PD-BSE** or **EDS**) underneath the SEM column, as highlighted in the picture below:

 ![Image of specimen stage and SEM column](image1)

 - Empty specimen stage at **EXC** position
 - SEM column
 - No detector

7) **Check and make sure** the **PD-BSE**, **STEM** and **EDS** detectors are **fully retracted** on the left side of SEM chamber:

 ![Image of PD-BSE, STEM, and EDS detectors](image2)

 - **PD-BSE**: Fully retracted
 - **BF-STEM**: Fully retracted
 - **EDS**: Fully retracted
5 Loading the Specimen

1) **Check to make sure** the exchange rod is locked. If not, turn the exchange rod locking knob *clockwise* to lock the rod and make sure the red light on the locking knob is ON.

2) Wear gloves. Press the AIR button on the Exchange Operation Panel. **Wait until** the buzzer sounds when air introduction into the specimen exchange chamber is complete.

3) **Press highlighted corner with your thumb (preferred) or grab the handle** to open the exchange chamber door.

 Caution: DO NOT hold the exchange rod to open the door, which will bend the rod with time and fail the sample transfer.
4) Insert the specimen stage onto the exchange rod
 a) Turn the exchange rod locking knob *counterclockwise* to release the rod and push the rod forward to find the fork.

 ![Image of Rod Fork and Exchange Rod Locking Knob]

 b) Turn the specimen holder lock/unlock knob *clockwise* to the *unlock* position and insert the rod fork into the holes on the specimen holder. Turn the knob *counterclockwise* to the *lock* position and confirm that the holder is locked to the rod by slightly pulling the holder.

 Warning: it is crucial that the sample holder is at the **Lock** position for sample transfer. Otherwise it will lead to transfer failure and parts damage on the SEM stage.

5) Pull the specimen exchange rod back into the airlock door and turn the exchange rod locking knob *clockwise* to lock the rod. The **red light** on the locking knob should be **ON**.

6) **Close** and **hold** exchange chamber door with right hand and use left hand to **press** the **EVAC** button on the **exchange operation panel**. **Wait until** the buzzer sounds indicating the chamber is evacuated back into vacuum.
Caution: DO NOT hold the exchange rod to close the door as this will lead to rod bending with time.

7) Press **OPEN** button on the exchange operation panel. **Wait until** the buzzer sounds and the gate valve is open.

8) **Turn** the exchange rod locking knob **counterclockwise** to release the lock. **Push** the transfer rod forward slowly into specimen chamber until the **insertion detection lamp** on top of the exchange chamber is lit in **blue**.

Warning:

- **DO NOT** rotate the specimen holder knob while pushing the rod into specimen chamber. This may cause accidental switch of **Lock** position to **Unlock** on the rod leading to sample transfer failure and mechanic damage.
- **Always hold the knob** when pushing the transfer forward to prevent rod accidental sliding into specimen chamber.

9) Turn the **specimen holder knob clockwise** to **UNLOCK** position. With **left hand** holding the door, **right hand** grabs the knob and **slowly pushes against** glass window with knuckles and pull the rod all the way to the back and turn **exchange rod locking knob clockwise** to lock the rod. The **red light** on the locking knob should be **ON**.
10) Press the CLOSE button on the exchange operation panel and wait until the buzzer sounds, indicating the sample transfer is complete.

6 Image Observation

1) Turn off small LCD from the back top left corner. Leaving the LCD on will damage the EDS detector even at retracted position.

2) Click the HOME button on the menu at the top right of PC-SEM window (Caution: DO NOT repeatedly click this button as this may lead to STOP button next ineffective) and watch the sample holder moving in the specimen chamber scope LCD from the exchange EXC position to HOME (measurement) position underneath the electron column.

3) Go to Stage tab and click Set button to set the specimen stub Size and Height

4) In the popup window below

 a) Choose the Size of specimen stub one size up for safety purpose, e.g.: choose 2 inches for 1 inch specimen stub).¹
 b) Set Height to Standard. Warning: make sure the specimen stub has been carefully aligned using height gauge.

¹ Failure to follow the instruction may lead to severe damage to the lens system; the user account will be revoked and the repair fee will be charged to PI’s account.
c) Confirm that the boxes next to detectors (EDX, BSE, BF-STEM and FQ-EDX) are not checked.

5) Setting imaging parameters.
 a) Confirm the accelerating voltage V_{acc} is OFF in the Electron Beam window below.
 b) Set accelerating voltage V_{acc}:

> Click inside Electron Beam window in highlighted rectangle region above and choose V_{acc} from dropdown list. (typical values: 1kV, 5 kV, 10kV or 15kV)

Warning:
> *Do Not* type arbitrary numbers, as the beams from dropdown list have been calibrated by service engineer.
> *Always try small voltage first* to avoid surface damage, over-charging and ebeam induced carbon deposition (black imaging box)

c) Set emission current I_e:

> Click inside Electron Beam window above to choose I_e at 10 µA.

Note:
> Consider smaller values if surface charging or carbon deposition is a concern.

d) Confirm the LM (Lower Magnification mode) is active inside Magnification window below. If not, click to switch back to LM mode.

e) Choose Rapid Scan Mode in the window below to start with.
f) Choose the SE(LM) (Secondary Electron Low Magnification) detector in Optics tab below. If not, click and choose from dropdown list.

![Optics window with SE(LM) selected]

g) Set the Probe current to High in the Operation condition window below. **Note**: high probe current is recommended at lower magnification to improve signal/noise ratio.

![Operation condition window with Probe current set to High]

h) Confirm that Cond Lens 1 is set at “5” in the Operation condition window above.

i) Set sample surface Z height (defined as the distance from the bottom of electron column to sample surface). **To avoid sample collision with detectors**, always check the table below before changing Z height value:

<table>
<thead>
<tr>
<th>Z height setting restrictions</th>
<th>(severe damage to lens may happen with (z < 5 \text{ mm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular SEM: 5 – 20 mm</td>
<td>EDS: 11 – 20 mm</td>
</tr>
<tr>
<td>PD-BSE: 8 – 20 mm</td>
<td>BF-STEM: 5 – 20 mm</td>
</tr>
</tbody>
</table>

Warning:

> The default height is **8 mm**, good in most imaging cases
> The **smallest Z height allowed is 5 mm**.
> Contact lab manager if Z height smaller than 5 mm is required. The sample height must be calibrated very well using the height gauge for small Z height. **Otherwise the sample will crash into electron beam column.**
6) Check and confirm the Specimen Chamber (SC) pressure has reached \textbf{LE-4 Pascal} on \textit{EVAC CONTROL} panel as highlighted below. \textbf{Never turn on the electron beam if the pressure is not ready}. The electron gun chamber will be contaminated quickly.

7) Click the \textbf{ON} button to turn on beam voltage V_{acc} in the \textbf{Electron Beam} window below: \textbf{Note}: the process takes seconds, \textbf{please be patient} and wait till the popup window disappears.

8) Click \textbf{Contrast} on the top menu bar or \textbf{AUTO} button on the \textbf{Manual Operation Panel} below if the image is too bright or dark. The \textbf{BRIGHTNESS} and \textbf{CONTRAST} knobs can be used separately for manual adjustment.

9) Roll the \textbf{track ball} on the \textbf{STAGE CONTROLLER} to find the field of interested in \textbf{LM} mode:
10) Adjust magnification using **MAGNIFICATION** knob on the **Manual Operation Panel**.

11) Adjust focus using **FOCUS COARSE** and **FINE** knobs. Move the stage to look for the field of interest in **LM** mode, and then click to switch to **High Magnification (HM)** mode.

12) In **HM** mode, change the magnification and adjust imaging quality using **FOCUS** and **STIGMA X/Y** knobs on **Manual Operation Panel**

 a) If image drifts (swaying or heaving) during focusing:

 > Click **Alignment** tab and click **Beam Align** button. The **ALIGNMENT LED** on the **Manual Operation Panel** should be flashing.

 > Bring the circular image to the center of the image area by adjusting X and Y knobs on the panel.

 > Click **Aperture Align** button below and adjust **STIGMA/ALIGNMENT X/Y** knobs on the panel to minimize the wobbling motion in image.

 > Click **Stigma Align X** button below and adjust **STIGMA/ALIGNMENT X/Y** knobs to minimize the wobbling motion in image. Repeat similar adjustment on by clicking **Stigma Align Y** button. (Note: reduce Magnification below 50k for this step)
b) If image **distorts** (stretching), correct **astigmatism**:
> Make sure the **Stigma** LED on **Manual Operation Panel** is **ON**. Use the **STIGMA/ALIGNMENT X/Y** knobs alternating with **FINE FOCUS** knob to reduce distortion and obtain the sharpest image.

c) **Repeat** steps a) and b) if necessary when switched to **higher magnification**.

13) **Save image**:

a) Select the field of view, confirm image with slow scan Slow1/2 or Slow3/4.

b) Click the **Capture** button.

c) Click **button next to ** Run ** to resume live image scan.

14) **Image capture settings for charging samples** (image distorts, streaky, drifts during scan):

a) Choose **CSS** (Charge Suppressed Scan) mode:
> Clicking on the small box in the **Scan Menu** to open the Scan Button Setting window.

> Check the radio button next to CSS. Hit **Apply** button and **Close** in the window below:
b) **If the charging is still strong on sample surface**, change the scan mode from line scan to frame mode:

> Click the small box in the Capture menu below:

> In the Capture/Save Setting window below, choose Fast capture mode with 8 frames and close the window.
c) If captured images using a) and b) still appear streaky, blurry due to charging, click **R1** button below **once** to switch to **R2** mode, wait several seconds till image contrast is acceptable and then click **Save** button to save the image.

15) **Data save:**

a) Before data save, turn off electron beam if not continuing image scan.

b) Click **ALL** button on the bottom of the image thumbnail column below:
c) Click \text{\textgreater{}PCI} button in above window, the collected images will be transferred into Quartz PCI program below. Click File in the menu and select Export All… on the dropdown menu, then Browse to choose Export to Path and File Format and hit OK.
7 Closing SEM measurement

1) Turn on small chamber LCD monitor.
2) Click the **OFF** button to turn off electron beam in the **Electron Beam** window below:

3) Click inside **Electron Beam** window highlighted above and set electron beam voltage \((V_{\text{acc}})\) to 10 kV, and emission current \(I_e\) to 10 µA.
4) If **Deceleration Mode** was used, change back to regular mode.
5) Switch imaging mode to **Lower Magnification (LM) Mode**

6) Click the **EXC** button on **PC-SEM** top menu to see the specimen stage moving to the exchange position. Wait till status vertical bar next to EXC button stops flashing.

7) Check and confirm in **Stage > Set: Set Sample Size/Detectors** window below that all detector check boxes are **unchecked**.

8) **Put on gloves and remove samples from the specimen chamber**: following the **reversed** order from sample loading, check **Section 5 Loading the Specimen**, steps 1) to 10).
9) **Turn off** small chamber LCD to prevent EDS detector damage from long time infrared light irradiation.

10) **DO NOT close** or **minimize** PC-SEM program
11) **Use ONLY** the Core USB flash drive for data transfer.
12) **Log off FOM** from SEM computer or user’s **FOM SEM calendar**. **Make sure** the following FOM Screen Lock window with dark background appear on the monitor to stop being continuously charged.
Note: if reporting issues, please check “Something wrong” in FOM logoff window and describe the issues in the empty box below.

8 Checklist after Experiment

1) **Sign off** logbook.
2) **Remove** ONLY samples from the stub on the specimen holder and **clean** the holder with Kimwipes using **IPA**. **Do Not** disassemble the specimen holder.
3) **Store** the specimen holder in assigned organizer box.
4) **Clear** the SEM work bench.

Warning: failed to follow checklist twice in one month will lead to temporary **account suspension**.
9 Photodiode Back Scattered Electron (PD-BSE)

1) Make sure \textbf{Vacc} is \textbf{OFF}

2) In \textbf{PC(SEM)} program with the sample holder at \textbf{EXC} or \textbf{HOME} position, click \textbf{Set} button in the \textbf{Stage} tab and check the \textbf{BSE} box

3) \textbf{Check to make sure sample Z height is set at 8mm}.

4) Select \textbf{Vacc} at 15 \textbf{kV} and regular \textbf{Ie=10} \textbf{µA} as the \textbf{PD-BSE} requires high e-beam kV

5) Select \textbf{Dual Screen} mode on the \textbf{PC(SEM)} top menu bar as shown below, and choose \textbf{detector} on the first screen and \textbf{detector} the second

6) Switch to \textbf{LM} mode and turn \textbf{Vacc ON}

7) \textbf{Slowly} rotate the knob shown below to move the \textbf{PD-BSE} detector to the measurement position. \textbf{Stop} turning quickly once feel stopped.
8) **Check to make sure the small chamber LCD is OFF.** The PD-BSE is very sensitive to infrared light generated from camera inside.

9) Click beside to activate SE imaging:
 a) Find interested areas on the sample inside the *annular* PD-BSE detector in LM mode; adjust focus and switch to HM mode.
 b) Get a **GOOD** image in HM mode
 Caution: Always switch to SE window to adjust image quality for PD-BSE imaging

10) Click beside to activate BSE imaging:
 a) Click or AUTO button on the *Manual Operation Panel* to adjust the image brightness/contrast. The BRIGHTNESS and CONTRAST knobs can be used separately to do manual adjustment
 b) Select the field of view, confirm image with slow scan or and then,
 click the **Capture** button.
 Warning: do not use rapid scan mode for PD-BSE imaging.

11) To quit **PD-BSE detection** mode:
 a) **Turn off** electron beam voltage, \(V_{\text{acc}} \)
 b) Switch to LM mode.
 c) Turn on the small chamber LCD
 d) **Rotate slowly to fully retract** the PD-BSE detector
 e) Click the **EXC** button to move the specimen stage to the exchange position. **Wait until the green status bar stops flashing** next to EXC button.
 f) Click **Set** button in the **Stage** tab shown below; uncheck **BSE(PD)** box, and then follow **Section 7 Closing SEM measurement** and **8 Checklist after Experiment** to close the measurement.
10 Scanning Transmission Electron Microscopy (STEM)

Notice: The STEM sample holder has a standard height of **36 mm**, so no need to use **Height Gauge**.

1) Make sure **Vacc** is **OFF**.
2) Make sure the small chamber **LCD** is **OFF**.
3) In **PC_SEM** program with the sample holder at **EXC** or **HOME** position, click **Set** button in the **Stage** tab and check the **BF-STEM** (Bright Field) box as shown below:

4) Make sure the **Z height** is set at **8 mm**. **Never** change the **Z height** larger than 20 mm to damages the STEM detector below the stage.

5) Select **V_{acc} ≤ 20 kV** and regular **I_e=10 µA** in **STEM**

6) Select **Dual Screen** mode on the **PC_SEM** top menu bar, and choose **EDX** detector for the first screen and **BF-STEM** detector the second

7) Check and make sure the **SC** chamber pressure reaches **LE-4 Pa**.
8) Switch to **LM** mode and turn on electron beam voltage **V_{acc}**.
9) **Slowly rotate the knob counterclockwisely to move** the STEM detector to the measurement position. **Stop** moving once feel stopped

![Image of STEM detector knob]

10) Click [1] beside [SE] to activate SE imaging:

a) Find interested areas on the sample in LM mode; adjust focus and switch to HM mode.

b) Following instructions in **Section 6 Image Observation** to get a well focused image in HM mode

Caution: Always switch to SE window to adjust image quality for STEM imaging

11) Click [2] beside [BF-STEM] to activate STEM imaging:

a) Click Contrast or AUTO button on the Manual Operation Panel to adjust the image brightness/contrast. The BRIGHTNESS and CONTRAST knobs can be used separately to do manual adjustments

b) Select the field of view, confirm image with slow scan or and then, click the Capture button.

Notice: do not use rapid scan mode for STEM imaging

12) To quit STEM detection mode:

a) Turn OFF electron beam voltage V_{src}, and switch V_{src} back to 10 kV, and 10 uA.

![Image of electron beam settings]

b) Slowly retract the STEM detector until stopped
c) Click the **EXC** button to move the specimen stage to the exchange position. Wait until the green status bar stops flashing next to EXC button.

d) Click **Set** button in the **Stage** tab; uncheck **BF-STEM** box, and then follow **Section 7 Closing SEM measurement** and **8 Checklist after Experiment** to close the measurement.

